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Abstract

Constitutive properties are required to model porosity, effective stress, porewater pressure, or
permeability during cake filtration. By using an analytical cake filtration model based on Tiller
(1975) with various constitutive property formulations, predictions of effective stress, permeability,
and porosity distributions in a filter cake can be made. This analytical approach was only valid
when spatially average values of porosity and pressure differential were constant over time. Several
different constitutive property formulations were compared to data of effective stress and
permeability as a function of porosity for kaolin clay in water. Also the spatial distribution of
porosity in a filter cake for kaolin clay in water was modeled using different constitutive
relationships.

Introduction

In order to model cake filtration processes, an understanding of constitutive relationships is
necessary. These relationships include the relationship between cake porosity (or concentration of
solids), ε, and effective stress, σ′, and porosity and permeability (or specific resistance), k. Such
relationships have been deduced empirically by Tiller and Horng (1983) and Willis et al. (1985)
using compression-permeability cell data and a variety of functional relationships between ε and k
and ε and σ′.
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The purpose of this paper is to examine how the various functional relationships can be used in an
analytical cake filtration model. The results were compared to profiles of porosity of kaolin
suspension filtrations described in Wells (1990).

Two-Phase Flow Governing Equations

The set of equations governing the behavior of the solid and liquid phases during pressure
filtration in one dimension (neglecting the effects of gravity and unsteady and convective
acceleration) [see Willis (1983), Tosun and Willis (1989)] consisted of continuity and momentum
equations for each phase.  These equations after averaging over a control volume of a filter cake are:
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where ε: porosity [-]
 t: time [T]
z: distance from filter medium [L]

Vl: liquid velocity [LT-1]
Vs: solid velocity [LT-1]
k: permeability [L2]
µ: dynamic viscosity [ML-1T-1]
p: porewater pressure [ML-1T-2]

σ′: effective stress [ML-1T-2].

To solve for the six unknowns (ε, Vl, Vs, , k, and p) as functions of z and t, proper boundary and
initial conditions and empirically deduced constitutive relationships were required.

By neglecting the medium pressure drop and assuming the solid velocities are zero, Tiller and Leu
(1980) deduced the following relationship (see also Wells, 1999) for fractional cake position where
L is the cake length and ∆p is the applied pressure:
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If the relationship between permeability and effective stress is known, an equation for the porosity,
effective stress, and permeability distributions as a function of z/L can be determined (see Willis et
al. 1991, Wells, 1999).

Constitutive Relationships

Relationships between porosity and permeability (or specific resistance) and between porosity and
effective stress were necessary to close the above set of governing equations. Table 1 shows some
of these constitutive relationships.
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Table 1. Typical constitutive property relationships used in cake filtration.

# Reference Porosity-Effective Stress
Relationship

Porosity-Specific
Resistance or Permeability
Relationship

Description
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β [-] and n [-] are empirical
parameters, εo [-] is a base
porosity at which Po is the
effective stress at εo, αo is the
specific resistance associated
with Po, ko is the permeability
[L2] associated with εo, for a
CaCO3-H2O system,
εo=0.7766, Po=85.5 kN/m2,
β=0.105, αo= 4.79E10 m/kg,
n=0.465 (Tan and Teoh, 1999)

3 Vorobjov
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G is the cake compressibility
modulus [kPa], e is the void

ratio =
ε

ε
−1

, r is the resistance

[m2], ro is an empirical
coefficient [m2], Go is an
empirical coefficient [kPa] and
s is the compressibility
coefficient [-]; typical values of
coefficients were n=1,
Go=6900 kPa, s=0.5, ro=1E14
m2 , ∆pc is the pressure
differential across the cake (the
final effective stress) αo is the
cake resistance [LM-1] at Po, an
arbitrary pressure differential
[ML-1T-2], s is the coefficient of
compressibility [-] with typical
values between 0.5 and 1.1
(Dick and Ball, 1980)
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Determination of Constitutive Parameter Relationships

In order to determine the empirical coefficients necessary for the proposed constitutive relationships
shown in Table 1, experimental data, such as relationships between cake porosity and permeability
and porosity and effective stress, were necessary. Researchers have determined these parameters
required by the constitutive property formulation by several techniques:

• Measurement of dynamic porewater pressure and porosity throughout the cake (Bierck et al.,
1988, Wells and Dick, 1993)

• Use of compression-permeability cell (Tiller and Horng, 1983, and Willis et al., 1985, even
though criticized by many as in Stamatakis and Tien, 1991)

• Use of specific resistance tests (Wells, 1990)
• Cake thickness and applied pressure over time for constant-rate filtration experiments

(Stamatakis and Tien, 1991)

Determination of the empirical parameters is based on a statistical least-squares error approach
where the parameters are chosen to minimize the sum of squares of the error.

An example data set for the filtration of kaolin clay in distilled water was used from Wells (1990).
Figures 1 and 2 show the k-ε and σ′-ε relationships, respectively, using least-squares fits from
Equation 1 and 2 from Table 1.

Analytical Models of Porosity, Effective Stress and Permeability

Analytical relationships for porosity, effective stress, and permeability as functions of fractional
cake position, z/L, can be derived based on the assumed form of the constitutive relationship.
This has been shown by Stamatakis and Tien (1991) and Wells (1999) and summarized by Willis
et al. (1991).

Relationships are shown in Table 2, 3 and 4 for effective stress, permeability, and porosity,
respectively, for Equation 1 and 2 from Table 1.

Table 2. Effective stress as a f(z/L) for constitutive relationships in Table 1.
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are empirical parameters described in Table 1; Po is a reference effective stress
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Figure 1. Permeability-porosity relationship for kaolin suspensions (Wells, 1990) using Equations from Table 1.
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Figure 2. Effective stress-porosity relationships for kaolin suspensions (Wells, 1990) using Equations from Table 1.

Best fit parameter
values for Equation 1
were a=2.1E-15 cm2,
b=15.0[-], c=2.0E-15 cm
s2/g, d=28.9[-] and for
Equation 2 were
n=0.3145, ko=2.5E-
9mm2 , εo=0.565,
β=0.12.

Best fit parameter
values for Equation 1
were a=2.1E-15 cm2,
b=15.0[-], c=2.0E-15 cm
s2/g, d=28.9[-] and for
Equation 2 were Po=2
kPa, εo=0.75, β=0.12.
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Table 3. Permebility as a f(z/L) for constitutive relationships in Table 1.

Constitutive
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Permeability as a f(z/L)
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Table 4. Porosity as a f(z/L) for constitutive relationships in Table 1.
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Porosity as a f(z/L)
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In order to show the functional dependence of these constitutive relationships, the relationships from
Table 4 were compared to a set of dynamic profiles of porosity (or concentration of solids using

[ ]ερ −= 1sC  where ρs is the density of the solids) of kaolin cake filtration experiments described in
Wells (1990) in Figure 3.

Both analytical cake models with the given constitutive relationships predicted well the average
profile of z/L vs. C, except during the initial period - effect of gravity sedimentation/filtration see
Christiansen and Dick (1985) - and the final period - effect of surface tension, shrinkage - see
Bierck et al. (1988).  The scatter of the data about the theoretical curve was greater in the upper
region of the cake where suspended solids concentrations were changing rapidly.

Whenever the average cake concentration was constant over time, the suspended solids
concentration as a function of z/L was not a function of time and the assumptions in the model
development were valid.
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Figure 3. Concentration of solids as a function of fractional cake position for a kaolin suspension at 340 kPa
pressure differential and an initial concentration of 0.31 g/cm3.

Summary

Analytical models were developed that simulated the steady-state profiles of porosity, effective
stress and permeability during cake filtration.  The model assumptions were no solid velocities in
the cake, which implied a constant average concentration of porosity or suspended solids
concentration. The analytical model agreed well with porosity data only when the average cake
concentration was constant (an assumption inherent in the development of the specific resistance
test).  During both the initial and final stages of dewatering the assumption of constant average cake
porosity was not valid.  Either functional form of the constitutive relationships used in the analytical
model yielded reasonable model predictions compared to data.

The development of mathematical models of dewatering processes driven by laboratory derived
constitutive relationships provides a tool for researchers to understand complicated dewatering
phenomena and how conditions, such as a sludge's constitutive properties, initial suspension
concentration distribution, pressure differential, and temperature, can affect filtrate production.

 Even though a sludge's physical properties can be deduced from the specific resistance test (Wells,
1991), further research is required to assess constitutive relationships for chemical and biological
sludges. Research is also needed to extend the application of mathematical dewatering models to
mathematical models of full-scale dewatering processes.



8

References

Bierck, B.R., Wells, S.A., and Dick, R.I. (1988). "Compressible Cake Filtration:
Monitoring Cake Formation and Shrinkage Using Synchrotron X-Rays," J. Water Pollution Control
Fed., 60, 645-650.

Christiansen, G. and Dick, R. I. (1985) "Specific Resistance Measurements: Nonparabolic
Data," J. of Envir. Engr., ASCE, 111, 243-257.

Dick, R.I. and Ball R. (1980) “Sludge Dewatering,” Critical Reviews in Environmental
Control, Vol 10, 269-337.

Shirato, M., Murase, T., Kato, H., and Shigeo, F. (1970) “Fundamentals Analysis for
Expression under Constant Pressure,” Filtration and Separation, Vol. 7, 277.

Stanmatakis, K. and Tien, C. (1991) “Cake Formation and Growth in Cake Filtration,”
Chemical Engineering Science, Vol. 46, No. 8, pp. 1917-1933.

Tan, R.B.H. and Teoh, S.K. (1999) “Cake Filtration and Characterization using a
MultiFunction Test Cell,” in Advances in Filtration and Separation Technology, Volume 13a, ed. by
W. Leung and T. Ptak, pp. 323-332.

Tiller, F.M. (1975). "Compressible Cake Filtration," in Scientific Basis of Filtration, ed. by
K. Ives, Noordhoff, London, 315-397.

Tiller, F.M. and Horng, L. (1983). "Hydraulic Deliquoring of Compressible Filter Cakes,"
AICHE J., 29, 297-305.

Tosun, I. and Willis, M.S. (1989). "Making the Case for the Multiphase Filtration Theory,"
Filtration and Separation, July/August, 295-299.

Vorobjov, E. I.; Anikeev, J.; and Samolyotov, V. (1993) “Dynamics of filtration and
expression: new methods for combined analysis and calculation of the process with due account of
cake consolidation dynamics and filter medium compressibility,” Chemical Engr and Processing,
Vol 32, 45-51.

Wells, S.A. (1990). "Compressible Cake Modeling and Analysis," Ph.D. Dissertation,
School of Civ. and Envir. Engr., Cornell Univ., Ithaca, N.Y.

Wells, S. A. (1991) "Determination of Sludge Properties for Modeling Compressible Cake
Filtration from Specific Resistance Tests," Proceedings ASCE National Conference in
Environmental Engineering, ed. by C. O'Melia, Arlington, Va., 125-131.

Wells, S. A. and Dick, R. I. (1993) ""Permeability, Solid and Liquid Velocity, and Effective
Stress Variations in Compressible Cake Filtration," in Advances in Filtration and Separation, Vol. 7,
ed. by W. Leung, American Filtration and Separations Society, pp. 9-12.

Wells, S. A. (1999) “Analytical Modeling of Cake Filtration,” in Advances in Filtration and
Separation Technology, Volume 13a, ed. by W. Leung and T. Ptak, pp. 158-165.

Willis, M.S. (1983). "A Multiphase Theory of Filtration," Progress in Filtration and
Separation 3, ed. R.J. Wakeman, Elsevier, Amsterdam.

Willis, M.S.; Tosun I.; and Collins, R.M. (1985). "Filtration Mechanisms," Chem. Engr.
Res. Design, 63, 175-183.

Willis, M.S.; Tosun, I.; Choo, W.; Chase, G.; and Desai, F. (1991) “A dispersed multiphase
theory and its application to filtration,” in Advances in Porous Media, Volume 1, ed. by Y.
Corapcioglu, Elsevier, NY.


