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Abstract

The specific resistance model of cake filtration is based on the assumption that the average cake
resistance is constant over time. This implies also that the spatially average values of porosity and
pressure differential are also constant over time since specific resistance is a function of both
parameters.

An analytical cake filtration model based on Tiller (1975) was derived using constitutive properties
of kaolin suspensions in distilled water. Constitutive properties were determined by experiments
performed using high-energy X-rays and porewater pressure probes to determine the spatial and
temporal distributions of porosity and porewater pressure. Using these constitutive properties,
predictions were made of porewater pressure and porosity distributions using the analytical model.
Porosity data were used to compare to the analytical model predictions assuming that porosity and
pressure were functions only of fractional cake position.

Introduction

The specific resistance is used to characterize biosolids or sludge dewaterability (Christiansen and
Dick, 1985a). Descriptions of the specific resistance test are shown in Suidan (1988) and Vesilind
(1979). An assumption in the development of the specific resistance model is that the solid
velocities are negligible throughout the cake.  Work by Tiller et al. (1987) and Willis et al. (1985)
showed that whenever the distribution of porosity was only a function of fractional cake position,
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z/L, where z is the height above the medium and L is the cake length, this assumption of the specific
resistance model was appropriate.

Deviations from the assumption of constant average porosity and porewater pressure were evaluated
during this study.  For many experiments, the average porosity and pressure differential across the
cake during a Buchner funnel test is not constant during the initial and final stages of dewatering
(Bierck et al., 1988).

Two-Phase Flow Governing Equations

The set of equations governing the behavior of the solid and liquid phases during pressure
filtration in one dimension (neglecting the effects of gravity and unsteady and convective
acceleration) [see Willis (1983), Tosun and Willis (1989)] consisted of continuity and momentum
equations for each phase.  These equations after averaging over the control volume for the domain
of the cake shown in Fig. 1 are:
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where ε: porosity [-]
 t: time [T]
z: distance from filter medium [L]

Vl: liquid velocity [LT-1]
Vs: solid velocity [LT-1]
k: permeability [L2]
µ: dynamic viscosity [ML-1T-1]
p: porewater pressure [ML-1T-2]

σ′: effective stress [ML-1T-2].

To solve for the six unknowns (ε, Vl, Vs, , k, and p) as functions of z and t, proper boundary
and initial conditions and empirically deduced constitutive relationships were required.

Constitutive Relationships

Relationships between porosity and permeability (or specific resistance) and between
porosity and effective stress were necessary to close the above set of governing equations.  Such
relationships were deduced empirically by Tiller and Horng (1983) and Willis et al. (1985) using
compression-permeability cell data and a variety of functional relationships between ε and k and ε
and σ′. Experimental work, summarized in Wells and Dick (1993) and Wells (1990), determined
these constitutive properties by using high-resolution dynamic porosity and porewater pressure data
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during filtration experiments using kaolin clay in distilled water. The following constitutive
relationships were used in that study of kaolin filtration:

k =  a  (b )exp ε (5)

vm  =  -   =  c  (d )
∂
∂ ′

ε
σ

εexp (6)

where a[L2], b[-], c[M-1LT2], and d[-] are empirical coefficients and mv is the coefficient of volume
compressibility [M-1LT2] [see Ortique (1982)]. For kaolin clay suspensions, these empirical
coefficients were found to be a=2.1E-15 cm2, b=15.0[-], c=2.0E-15 cm s2/g, d=28.9[-].

Analytical Model Development and Results

Shirato and Sambuichi (1964) and Tiller (1975) developed an approach for analytical
modeling of the porosity distribution within a filter cake assuming that solid velocities were
negligible compared to liquid velocities within the cake.  [Note that the assumption of zero solid
velocities was equivalent to assuming that the average cake porosity was constant because Eq. 2
with Vs = 0 would require that ε could not be a f(t).]

Using the assumption that Vs = 0, analytical relationships for porosity, porewater pressure,
effective stress, and permeability as functions of fractional cake position, z/L, were derived in
Appendix A based on Tiller's (1975) approach and the constitutive relationships of Eqs. 5 and 6.

Using the constitutive relationship parameter values for kaolin clay, comparisons of the
analytical model predictions (Eq. ) and dynamic porosity profile data are shown in Figs. 1 to 4 for
pressure differentials of 170 kPa, 340 kPa, 520 kPa and 690 kPa, respectively.  The dynamic
porosity data were plotted as suspended solids concentration vs the normalized distance coordinate,
z/L, where L is the length of the cake and z is the distance from the filtration medium.  (Note that
the initial data points in Figs. 1 to 4 are at t=0 s, which was the suspended solids concentration
profile prior to application of the applied pressure differential.)

The analytical cake model with the given constitutive relationships predicted the average
profile of z/L vs. C, except during the initial period - effect of gravity sedimentation/filtration see
Christiansen and Dick (1985b) - and the final period - effect of surface tension, shrinkage - see
Bierck et al. (1988).  The scatter of the data about the theoretical curve was greater in the upper
region of the cake where suspended solids concentrations were changing rapidly.

Whenever the average cake concentration was constant over time, the suspended solids
concentration as a function of z/L was not a function of time.  For a constant average cake
concentration, plots of t/V vs. V were linear, and the specific resistance concept was valid.

Summary

Analytical models were developed that simulated the steady-state profiles of porosity,
porewater pressure, effective stress and permeability during cake filtration.  The model assumptions
were no solid velocities in the cake, which implied a constant average concentration of porosity or
suspended solids concentration. The analytical model agreed well with porosity data only when the
average cake concentration was constant (an assumption inherent in the development of the specific
resistance test).  During both the initial and final stages of dewatering the assumption of constant
average cake porosity was not valid.
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Figure 1. Concentration of kaolin suspended solids as a function of fractional cake position for pressure differential
of 170 kPa.
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Figure 2. Concentration of kaolin suspended solids as a function of fractional cake position for pressure differential
of 340 kPa.
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Figure 3. Concentration of kaolin suspended solids as a function of fractional cake position for pressure differential
of 520 kPa.
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Figure 4. Concentration of kaolin suspended solids as a function of fractional cake position for pressure differential
of 680 kPa.
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The development of mathematical models of dewatering processes driven by laboratory derived
constitutive relationships provides a tool for researchers to understand complicated dewatering
phenomena and how conditions, such as a sludge's constitutive properties, initial suspension
concentration distribution, pressure differential, and temperature, can affect filtrate production.

 Even though a sludge's physical properties can be deduced from the specific resistance test
(Wells, 1991), further research is required to assess constitutive relationships for chemical and
biological sludges. Research is also needed to extend the application of mathematical dewatering
models to mathematical models of full-scale dewatering processes.
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Appendix - Analytical Cake Filtration Model Derivation

This appendix presents an analytical model of porosity, permeability, effective stress, and
porewater pressure distributions in filter cakes.

Eq. 3 and 4 can be combined into a total momentum balance such that

dz
d

dz
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or
dz

d
dz
dp σσ ′

−==
′

+ 0 (7)

Substituting Eq. 7 into Eq. 3,
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Separating the variables and integrating between the limits z1 and z2, Eq. 8 becomes
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Neglecting the medium pressure drop, σ′(z=0)=p and σ′(z=L)=0. Integrating Eq. 9 between z1=0
and z2=z,
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Similarly integrating Eq. 9 over the cake from z1=0 to z2=L,
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Dividing Eq. 10 by Eq. 11 yields
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Assuming Vs=0, reversing the limits of integration, and simplifying, Eq. 12 becomes
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If the relationship between permeability and effective stress is known, an equation for the
porosity distribution as a function of z/L can be determined [Tiller and Leu (1980)]. Alternatively,
using the definition of mv in Eq. 6, i.e.,

d  =   d  =  
-d

m
  ,

v
′

∂ ′
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σ σ
ε

ε ε
(14)

with appropriate boundary conditions (at the top of the cake at z=L the porosity is ε i, the initial
porosity of the suspension, and at the bottom of the cake at z=0, ε=εo, the terminal porosity) and
substituting these into Eq. 13,
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Substituting Eqs. 5 and 6 into Eq. 15, simplifying, and rearranging, then
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Porewater pressure, effective stress, and permeability profiles also can be determined as
functions of position, z/L. The permeability as a function of z/L is found by substituting Eq. 16 into
Eq. 5 and simplifying such that
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Substituting Eq. 16 into Eq. 19 yields
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Using Eq. 7 and appropriate boundary conditions with Eq. 21, the porewater pressure is
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