d

3.5.1 CHEMICAL SORPTION BY ORGANIC CARBON

A large number of organic chemical pollutants are *hydrophobic*, literally "afraid of water." These chemicals have limited solubility in water but do tend to dissolve easily into oils, fats, nonpolar organic solvents, and organic carbon in the soil. To a first approximation, the partition coefficient for many hydrophobic chemicals in soil is not especially sensitive to the exact source or nature of the organic carbon. Accordingly, $K_{\rm oc}$, the organic carbon—water partition coefficient, can be used to estimate the extent of sorption. $K_{\rm oc}$ can be expressed as

$$K_{oc} = \frac{\text{chemical concentration sorbed to organic carbon (mg/g)}}{\text{chemical concentration in water (mg/ml)}}$$
. [3-25]

Because the fraction of organic material in porous media is rarely 100% and is typically less than 1% (notable exceptions exist in wetland sediments and peatlands), the partitioning of a hydrophobic organic compound between water and bulk soil can be estimated by the equation

$$K_d = f_{oc} \cdot K_{oc}, \qquad [3-26]$$

where f_{oc} is the fraction of soil that is organic carbon [M/M].

TABLE 3-5 Relationships to Calculate K_{oc} from K_{ow}^{a}

Equation ^b	No.c	r ^{2 d}	Chemical classes represented
$\log K_{\rm oc} = 0.544 \log K_{\rm ow} + 1.377$	45	0.74	Wide variety, mostly pesticides
$\log K_{\rm oc} = 0.937 \log K_{\rm ow} - 0.006$	19	0.95	Aromatics, polynuclear aromatics, triazines, and dinitroaniline herbicides
$\log K_{\rm oc} = 1.00 \log K_{\rm ow} - 0.21$	10	1.00	Mostly aromatic or polynuclear aromatics; two chlorinated
$\log K_{\rm oc} = 0.94 \log K_{\rm ow} + 0.02$	9	NA	s-Triazines and dinitroaniline herbicides
$\log K_{\rm oc} = 1.029 \log K_{\rm ow} - 0.18$	13	0.91	Variety of insecticides, herbicides, and fungicides
$\log K_{\rm oc} = 0.524 \log K_{\rm ow} + 0.855$	30	0.84	Substituted phenylureas and alkyl-N-phenylcarbamates

^aLyman et al. (1990). NA, not available.

 $^{{}^{}b}K_{oc}$, organic carbon-water partition coefficient; K_{ow} , octanol-water partition coefficient.

^cNumber of chemicals used to obtain regression equation.

^dCorrelation coefficient for regression equation.

The preceding expression is useful for soils in which $f_{\rm oc}$ is greater than approximately 0.001; in these soils, sorption to organic carbon dominates. For lower values of $f_{\rm oc}$ (values of 10^{-4} may occur in some aquifer materials), direct sorption onto mineral phases of the soil can become important, and $K_{\rm oc}$ is no longer a good predictor of sorption.

 $K_{\rm oc}$ can be estimated from $K_{\rm ow}$, the octanol-water partition coefficient (defined in Section 1.8.3). Table 3-5 shows some correlations between $K_{\rm oc}$ and $K_{\rm ow}$ for different classes of hydrophobic organic compounds. For further descriptions of the hydrophobic behavior of chemicals, the reader is referred to Schwarzenbach *et al.* (1993).

EXAMPLE 3-7

For an aquifer solid with a bulk density of 2 g/cm³ containing 0.5% organic carbon, estimate the retardation factor for the common polycyclic aromatic hydrocarbon (PAH) naphthalene ($C_{10}H_8$; see Fig. 1-11), used in mothballs. If the porosity of the aquifer is 0.24, the hydraulic conductivity is 10^{-3} cm/sec, and the hydraulic gradient is 0.001, how fast will a plume of naphthalene travel?

From Table 1-3, $\log K_{\rm ow} = 3.36$. By using Table 3-5, an estimate of $K_{\rm oc}$ for PAHs is

$$\log K_{\rm oc} = 0.937 \log K_{\rm ow} - 0.006.$$

Therefore,

$$\log K_{\rm oc} = (0.937) \cdot (3.36) - 0.006$$

 $K_{\rm oc} \approx 1400$ ml water/g organic carbon.

Use Eq. [3-26] to estimate K_d :

 $K_d = (0.005 \text{ g carbon/g soil}) \cdot (1400 \text{ ml water/g carbon}) = 7 \text{ ml water/g soil}.$

Use Eq. [3-24b] to estimate the retardation factor:

$$R = 1 + (7 \text{ ml/g}) \cdot (2 \text{ g/cm}^3)/0.24 = 59.$$

Use Eq. [3-2] to estimate specific discharge:

$$q = 10^{-3} \text{ cm/sec} \cdot 0.001 = \frac{10^{-6} \text{ cm}}{\text{sec}}.$$

Figure 11.10 Relationship of $\log K_{\rm om}$ and $\log K_{\rm ow}$ for a series of neutral organic compounds: (\bullet) aromatic hydrocarbons, (\blacksquare) chlorinated hydrocarbons, (\blacktriangle) chloro-S-triazines, and (*) phenyl ureas (data compiled by Karickhoff, 1981). See Table 11.2 for correlations of each compound class.

From Schwartzenbuck & Gschwend