## CE/ESM 479/579 Fate and Transport

 EXTRA CREDIT PROBLEM SET - 2016 DUE: Thursday 6/9/2016 at CEE Office by 5 pm.1. A 5 kg eagle feeds on small fish from a pesticide-contaminated farm pond. The fish contain 2.0 ppm of pesticide and the eagle eats 200 g of fish each day. The eagle eliminates about $20 \%$ of its body burden of pesticide each week. What is the steadystate concentration of pesticide in the eagle.
2. Using the data tables from various readings, estimate the body concentration in $\mathrm{mg} / \mathrm{kg}$ of a fathead minnow in equilibrium with water that is saturated with $n$ octane.
3. A stream contains $10-3 \mathrm{M}$ vinyl acetate and the pH is 8.5 . The main decay mechanism is hydrolysis with the following rate coefficients:
$k_{\mathrm{a}}=1.4 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$
$k_{\mathrm{n}}{ }^{\prime}=1.1 \times 10^{-7} \mathrm{~s}-1$
$k_{\mathrm{b}}=10 \mathrm{M}^{-1} \mathrm{~s}^{-1}$
What is the expected half life, in hours, of vinyl acetate in this system?
4. A stream has a discharge of $3.0 \mathrm{~L} / \mathrm{s}$, is 0.2 m deep. At a certain point in the stream toluene seeps in from groundwater at a rate of $9 \mathrm{mg} / \mathrm{s}$ and dissolves into the stream. The propane piston velocity is $19 \mathrm{~cm} / \mathrm{h}$. What is the predicted toluene concentration in the stream at a point that is 35 minutes downstream of the toluene seep? (Assume air-water exchange is water-side control and is the only loss of toluene.)
5. Methylmercury very strongly partitions into fish tissues with a BCF of $10^{6} \mathrm{~L} / \mathrm{kg}$. What fraction of the methylmercury in a lake would be in fish tissue if the lake has a volume of $10^{6} \mathrm{~m}^{3}$ and contains 1000 kg of fish? (Note that you do not need to know the concentration of mercury to answer this question.)
