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Filtration Modeling of a Plate-And-Frame-Press

by

Scott A. Wells1

Abstract

The porosity distribution and filtrate production during cake filtration in a plate-and-

frame filter press were simulated mathematically. The model considered filtration that

occurs after the filling process, not filtration that occurs as the suspension fills the cell.

Governing equations for the temporal porosity distribution were developed for a plate-

and-frame press. The governing equations were solved numerically using an

alternating-direction-implicit scheme. Appropriate initial and boundary conditions

were determined based on characteristics of the plate-and-frame press and of the

suspension properties. Predicted porosity and velocity distributions were calculated

for assumed constitutive parameters.
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INTRODUCTION

Plate-and-frame presses are used frequently in solid-liquid separation processes

(Avery, 1988). After emptying the cake from a cell of a plate-and-frame press from a

prior filtration cycle, a suspension is pumped under pressure into an empty cell.

During this period, some filtration occurs. After filling the cell, filtration proceeds as

the pump pressure increases. The model described in this study evaluated filtration

that occurs after the filling process. Figure 1 shows an individual plate-and-frame press

cell used for the modeling study.

THEORETICAL BACKGROUND

Governing equations for cake filtration include solid and liquid continuity and the

reduced forms of the solid and liquid momentum equations (Willis, 1983) assuming

that the inertial and gravity terms of the liquid and solid phase and the solid-solid

shear stresses are negligible and that ∂/∂x=0 (where x is the spatial coordinate into the

plane of Figure 1):
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where ε is the porosity [-], Vl is the liquid velocity [cm/s], Vs is the solid velocity

[cm/s], σ' is the effective stress [kPa], p is the porewater pressure [kPa], t is time [s], y

and z are spatial coordinates [cm], ∆p is the total applied pressure [kPa].

By taking the derivative of Equation 3 with respect to y and the derivative of Equation

4 with respect to x, adding the resulting equations and substituting Equation 1,
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Using the definition of the constitutive property that vm = - =
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∂(εVsy)/∂y and ∂(εVsz)/∂z (Voroboyov, 1993), Equation 6 becomes
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The boundary conditions for the domain shown in Figure 1 are

ε ε( , , ) ( , )y z t y z initial= =0 8

∂ε
∂y y L z t=

=
, ,

0 9

ε ε( , , ) ( )y z and z H t to= = =0     10

ε ε( , , )y z t i= =0 11

where ε i is the initial porosity of the suspension (constant over time if the porosity of

the feed solution remains constant and no filtration occurs in the manifold to the

individual filtration cells), εo is the terminal porosity along the filter medium (a

function of time because the applied pressure changes as the pressure output of the

pump supplying the filter cells varies), and ε initial is the initial porosity distribution in

the filtration cell after the filling process.

NUMERICAL SOLUTION

The governing equation was solved by finite difference methods. The spatial domain

was divided into equally spaced grid points in the y and z directions.  Since the  terms,

z

v

k
m zµ

 and y

v

k

m yµ
, were non-linear, direct solution techniques resulting in excessive

computational time were not used. Defining these terms as



5

y
y

yv
=

k

m
β

µ
 12

and

z
z

zv
= k

m
β

µ
, 13

linearization of the term β  at the n+1 time step was accomplished by using a Taylor

series expansion neglecting higher order terms such that
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where n is the time level of the numerical solution and ∆t is the time step.

In this case, using an approximation for ∂β/∂t at the n time level by using a backward

difference in time [such as, (βn-βn-1)/∆t] eliminated the non-linearity, such that

n+1 n n-1  2 -β β β≈ . 15

The alternating-direction-implicit technique (ADI) was used for solving the linearized

partial differential equation (Anderson et al, 1984). This technique splits the solution

into 2 parts (sweeping along rows of y and columns of x) thus accelerating convergence

of the solution.

The first difference equation for advancing n+1/2 time steps was
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After the sweep of each row, the second equation for advancing the iteration to the n+1

time step was
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After advancing to the n+1 time level, iteration was continued until the solution

converged. The convergence criteria was set by the user. The iteration proceeded by

setting the εn+1 value to εp+1, where p was the iteration level.
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DETERMINATION OF THE TERMINAL POROSITY AS A FUNCTION OF TIME

The value of εo, the  boundary condition along the z=0 and z=H axes, was a function of

time because of fluid pressure changes from the pump supplying the filter cells. As

suggested by Vorobjov (1993), a typical characteristic curve for a pump was necessary

as input to the model. The pump characteristic curve could be determined as a

polynomial function of suspension flow rate, Q (cm3/s):

p(kPa) = p (kPa)+  p  Q +  p  Qa b c
2 18

where p is the porewater pressure supplied by the pump in kPa, pa (kPa), pb

(kPa/cm3/s), and pc (kPa/cm6/s2) are empirical parameters. Figure 2 shows a typical

characteristic curve for a pump.

The maximum applied pressure could be determined by taking the derivative of the

Equation 18, dp/dQ = 0, and solving for Qmax at pmax. Then maxQ =
- p
2p

b

c

and pmax was

determined by substituting this result into Equation 18.

In the model the flow of the suspension to the plates after the filling process would be

equal to the total filtrate production from all the filter cells.

DETERMINATION OF THE LIQUID VELOCITY AND FILTRATE PRODUCTION
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The technique to calculate these quantities was similar to that used by Wells (1991)

where the momentum Equations 3 and 4 were inverted to solve for Vlz and Vly such as
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z z
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These equations were put into finite difference form and solved from the porosity

distribution. The total filtrate production, Q in cm3/s, was calculated from

Q =  2 N W V  y iz=0 o
i=

i =ny

∆ ε
1

∑ 21

where W is the cell width in cm, N is the number of filter cells for the entire filter press,

the "2" is to account for the filtrate production along the z=H boundary, i is the number

of model cells along the y-axis, and ny is the number of grid cells along y.

CONSTITUTIVE RELATIONSHIPS

The model used functional forms of constitutive relationships from Wells (1991) and

Vorobjov et al. (1993) . These relationships described the stress-strain relationships of

the cake. Relationships between the cake porosity (or void ratio) and effective stress

and between the cake porosity and permeability (or similarly between cake resistance

and porewater pressure) were necessary as input to the mathematical model.
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Those relationships used by Wells (1991) were exponential functions where

y,zv y,z y,zm = - =
p
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∂
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ε
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and

y,z y,z y,zk = pka ( pkb )exp ε 23

where ava [gm/cm/s2], avb [-], pka [cm2], and pkb [-] are empirical coefficients. The

subscripts in y and z indicate that different relationships could be used in y than in z.

The terminal porosity εo was determined by integrating the stress-strain relationship for

the solid phase from Equation 22, such as
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After integration and simplification, the porosity at any porewater pressure p was then

[ ]ε ε= -
1

avb
(ava avb ( p - p)+ (-avb )iln exp∆ 25

The terminal porosity was determined by setting p=0 kPa in the above equation.

A power-law relationship used  by Vorobjov et al. (1993) was of the form 

y,z o
S

y,z
-1r = r (

p
) = ky,z

′σ
∆ 26

and
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where G is the cake compressibility modulus, kPa; e is the void ratio, ε/(1-ε), r is the

resistance [m-2], ro is an empirical coefficient [m-2], Go is an empirical coefficient [kPa],

and S is the compressibility coefficient [-].

The relationship between void ratio and effective stress can be obtained by integrating

Equation  27 from the initial void ratio to an arbitrary void ration e with n=1, such that

-
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e
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Then, after simplification, the ratio of ∆p over effective stress can be determined as a

function of the void ratio or porosity as

∆ ∆ ∆p
=

1+ e
1+e
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′
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This constitutive relationship has the undesirable quality that the porosity or void ratio

at p=0 or σ'=∆p cannot be determined. This occurs because the integration of Equation

28 cannot be made between the limits of ei to e (or ε i to ε) as was performed in the

integration of Equation 24. For example, at e=ei, σ'=0, and the integral of Equation 28 is

undefined. One way to approximate this was to take the limits of integration in
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Equation 28 from e to ei and from σ' to σsmall, where σsmall is an arbitrary, very small,

non-zero stress. Carrying out the integration, substituting σ'=∆p, and simplifying

resulted in

o i

- p

G
small

e = (1 - e )
p

o

∆
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σ
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or in terms of porosity,
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(Note that because of this problem in determining εo with the second set of constitutive

parameters, a model based on effective stress, σ', rather than porosity, ε, would be

more appropriate since no simplifying assumptions regarding σsmall would have to be

made unless one wanted to convert the σ' values to ε values.)

In order to illustrate the functional dependence on porosity, Figures 3 and 4 show

comparisons of the exponential and the power law constitutive relationships for some

hypothetical parameters. Figure 5 shows how the effective stress - porosity relationship

varies as the value of σsmall is varied using the power function constitutive relationship.

The terminal porosity (and hence the ε-σ'  relationship) is a strong function of σsmall.
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POROSITY INITIAL CONDITION

The initial porewater pressure (or porosity) distribution in the filter plate cell at the end

of the filling cycle is required for the numerical solution. Since this initial distribution

was unknown, it was estimated using different functional forms of the initial porosity

distribution that would satisfy the boundary conditions at the beginning of filtration.

One of these initial pressure distributions evaluated was a parabolic distribution in z

from z=0 to z=H/2 (the centerline). This pressure distribution was assumed to be of the

form

p(kPa)= a + bz + cz 2  32

where a [kPa], b [kPa/cm], and c [kPa/cm2] are empirical coefficients and z is the

distance from z=0 in cm. Note that dp/dz = b + 2cz. To satisfy the boundary conditions

that p=papplied (a fraction of the theoretical maximum pressure or the porewater pressure

delivered by the pump at the end of the filling period) at z=H/2 and p=0 at z=0, the

coefficient “a” must be zero and (using H/2=h)

c =
p - bh

h

applied
2

33

Because the filtrate production must always be non-zero and positive, the condition

that dp/dz > 0 required that b>0 and b <
2 p

h
applied . The filtrate production along z=0

was then at the beginning of the model simulation
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V(y, z = 0,t = 0)=
k dp

dz
=

k
b

z zµε µε= =0 0
34

Figure 6 shows the variation in pressure with distance from the filter medium for a

papplied of 175 kPa satisfying both the boundary conditions at each end of the domain

and the above conditions. The corresponding initial porosity distribution is shown in

Figure 7. Using Equation 34, the variation of filtrate production with the parameter “b”

is shown in Figure 8.

DETERMINATION OF MODEL PARAMETERS

Data required for the model included the following: (1) relationship between

permeability and porosity (such as parameters pka and pkb in Equation 23), (2)

relationship between porewater pressure (or effective stress) and porosity (such as ava

and avb as in Equation 22), (3) relationship between pump pressure and suspension

flow rate (pump characteristic curve, where pa, pb, and pc are curve parameters as in

Equation 18), and (4) the pressure differential at the initiation of expression (p initial, some

fraction of the total pressure differential papplied).

Once pinitial (at t=0) is estimated, the initial filtrate flow rate at t=0 can be calculated from

inverting Equation 18, such that
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Using Equation 21 and assuming that Vl(t=0) and εo are not a function of y,

V t
Q

NW y
l

o
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0
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1
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36

After the suspension flow rate at t=0 is known, then the parameter "b" in Equation 34

can be determined from

b =
k

V (t = 0)l
µε 37

where k and ε are evaluated at pinitial. Once the parameter “b” is known, then the initial

parabolic distribution of porosity (or pressure) is known.

The following steps were performed in the numerical solution at the end of each time

step:

• The liquid velocity is computed from Equation 34.

• The filtrate production is then computed from Equation 21.

• The applied porewater pressure is determined from Equation 18.

• The porosity at z=0 is calculated from Equation 25 for the exponential constitutive

relationship.

• The ADI technique is used to solve for the new porosity distribution at the next time

step.
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MODEL RESULTS

To demonstrate the model solution, a set of model parameters and constitutive

relationships were chosen. Table 1 shows the operational parameters for the

simulation, and Table 2 shows the assumed slurry properties. Table 3 shows those

parameter values that were derived from the operational and the slurry parameters.

The initial porosity and porewater pressure distribution were shown in Figures 6 and 7

using a value of “b” of 14 kPa/cm3/s. Figure 9 shows the predicted filtrate production

over time for this simulation. Figure 10 shows the predicted porosity distribution after

60 s. Since the porosity distribution predicted by the model was largely one-

dimensional in the z-axis, this simulation result may have been successful using just a

one-dimensional, rather than a two-dimensional model. The tendency to a one-

dimensional solution is a result of both the assumed initial porosity distribution and

the isotropy of permeability in y and z.
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Table 1. Operational variables for a filter plate simulation.
Operational variables Symbol Assumed value
Applied pressure differential at
maximum pressure

Papplied 690 kPa

Pressure after filtration cell is
filled

Pinitial 175 kPa

Cell length ∆y
ny
∑ , where ny is the number of

grid cells in the y-direction, L

50 cm

Half cell height ∆z
nz
∑ , where nz is the number of

grid cells in the z-direction, H

50 cm

Grid points in y ny 50
Grid points in z nz 50
Supply pump characteristic
curve parameter

pa (Equation 18) 690 kPa

Supply pump characteristic
curve parameter

pb (Equation 18) -1.3 kPa/cm3/s

Supply pump characteristic
curve parameter

pc (Equation 18) -0.055
kPa/cm6/s2

Number of plates N (Equation 21) 100
Width of cell W (Equation 21) 5 cm
Inlet half width (see Figure 1) 10 cm

Table 2. Slurry properties for a filter plate simulation.
Slurry variables Symbol Assumed value
Effective-stress - porosity
relationship parameter

avay=avaz (Equation 22) 2.04E-15 g/cm/s2

Effective-stress - porosity
relationship parameter

avby=avbz (Equation 22) 28.9 [-]

Permeability - porosity
relationship parameter

pkay=pkaz (Equation 23) 2.04E-16 cm2

Permeability - porosity
relationship parameter

pkby=pkbz (Equation 23) 28.9 [-]

Suspension temperature T, the temperature of the
slurry affects the dynamic
viscosity

27oC

Initial porosity of slurry ε 0.85 [-]
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Table 3. Derived variables for a filter plate simulation.
Derived variables Symbol Assumed value
Pressure initial condition shape
parameter

b (Equation 32) 14 kPa/cm

Pressure initial condition shape
parameter

c (Equation 32 and 33) -0.28 kPa/cm2

Initial filtrate velocity at
initiation of filtration

V(y,z=0,t=0)  (Equation 34 and
35)

0.006 cm/s

Initial porosity at z=0 at t=0 at
Pinit of 175 kPa

ε(z=0, t=0) 0.56 [-]

Terminal porosity at p=690 kPa εo 0.51 [-]

In order to show the influence of the relationship of ky to kz on model results, Figures

11 and 12 show porosity profiles after 60 s for ky/kz=10 and ky/kz=100, respectively.

For these simulations shown in Figures 11 and 12, the same parameter values were

used in Tables 1 and 2 except that the value of pkya was increased by a factor of 10 and

100, respectively. The predicted impact of anisotropic permeability resulted in

somewhat different predicted distributions of cake porosity. Calculations of the

predicted velocity field and streamlines are shown in Figures 13 and 14 for ky/kz=10

and ky/kz=100, respectively, after 60 s.  The predicted velocities were highest at the

inlet and were affected significantly by the ratio of lateral to vertical permeability. The

predicted rate of filtrate volume production though was the same for these simulations

as for the case of ky/kz=1 since kz was not changed between runs.
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CONCLUSIONS

A numerical model of the filtration dynamics of a plate-and-frame press was

developed. How the model parameters could be used to solve the governing equations

was demonstrated. The model was especially sensitive to the assumed initial porosity

distribution at the end of the filling cycle and to the chosen constitutive parameter

values.  Our understanding of the basic slurry constitutive properties is essential to

model filtration processes adequately. Whether there are spatial anisotropies in

permeability is also an area of research since it affects the predicted porosity and

velocity distribution within the cake.

The model is not applicable prior to filling the filtration cell since inertial and solid-

solid shear stress terms may be important and is also not applicable to very small

pressure differentials where gravity forces may become important. Since the initial

parabolic distribution of applied pressure (Equation 32) was chosen for mathematical

convenience, the validity of this assumption also needs to be evaluated further.
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Figure captions

Figure 1. Layout of a plate-and-frame press filtration cell.

Figure 2. Characteristic curve for plate-and-frame pump where Pmax is 690 kPa. The

characteristic curve parameters from Equation 18 were pa=690 kPa, pb=-1.3 kPa/cm3/s

and pc=-0.055 kPa/cm6/s2.

Figure 3. Variation of effective stress with porosity for constitutive relationships using

the exponential form (Equation 22) and the power-law form (Equation 27). The

following parameter values were used: ava=2.1E-11 kPa-1, avb=28.9[-]; Go=6900 kPa,

n=1, σsmall=0.007 kPa.

Figure 4. Variation of permeability with porosity for constitutive relationships using

the exponential form (Equation 23) and the power-law form (Equation 26). The

following parameter values were used: pka=2.1E-16 cm2, pkb=18[-]; ro=1E14 m2, S=0.5,

σsmall=0.007 kPa.

Figure 5. Effect of variation of σsmall  on the effective stress-porosity relationship using

the power-law constitutive function.

Figure 6. Variation of porewater pressure with distance from the filter medium (z=0 is

at the filer medium and z=1 is at the centerline of the cell) as a function of the parameter

“b” [kPa/cm] in Equation 32 for an initial pressure differential of 175 kPa.

Figure 7. Variation of porosity with distance from the filter medium (z=0 is at the filter

medium and z=1 is at the centerline of the cell) as a function of the parameter
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“b”[kPa/cm] in Equation 32 for a pressure differential of 175 kPa and using Equation

25 with ava=2E-12 kPa, avb=28.9, and ε i=0.85.

Figure 8. Variation of filtrate velocity at z=0 as a function of the parameter “b” using

Equation 34 with Equation 23 (pka=2.1E-16 cm2, pkb=18[-]) for a pressure differential of

175 kPa.

Figure 9. Predicted filtrate production for simulation based on parameters in Tables 1

and 2.

Figure 10. Predicted porosity distribution after 60 s for simulation based on parameters

in Tables 1 and 2.

Figure 11. Predicted porosity distribution after 60 s for simulation based on parameters

in Tables 1 and 2 except that ky/kz=10.

Figure 12. Predicted porosity distribution after 60 s for simulation based on parameters

in Tables 1 and 2 except that ky/kz=100.

Figure 13. Predicted fluid velocity distribution after 60 s for simulation based on

parameters in Tables 1 and 2 except that ky/kz=10. Streamlines are shown illustrating

the fluid path through the cake.

Figure 14. Predicted fluid velocity distribution after 60 s for simulation based on

parameters in Tables 1 and 2 except that ky/kz=100. Streamlines are shown illustrating

the fluid path through the cake.
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